Delay Analysis Methodologies
February 27, 2021
There are numerous forensic schedule analysis methods that can be used to quantify delays that occurred during a project. The most common delay analysis methods are as follows:
Impacted As-Planned
The impacted as-planned analysis involves the insertion of delay events into a baseline or as-planned schedule to determine the hypothetical impact of such events. This method involves modifying the baseline or as-planned schedule to include new activities and logic to represent delay events. The difference between the project completion date in the impacted as-planned schedule and the original as-planned schedule quantifies the delay. This methodology is simple and does not require an as-built schedule. However, it is considered a hypothetical model as it does not rely on as-built data.
Collapsed As-Built
The collapsed as-built analysis is essentially the opposite of an impacted as-planned analysis. This method involves removing delay events from the as-built schedule to determine when the project should have been completed ‘but for’ the delay events. This methodology is easy to understand and does not require an as-planned schedule or contemporaneous schedule updates. However, it can be manipulated with the insertion of after-the fact logic ties and delay events.
As-Planned vs. As-Built
The as-planned vs. as-built analysis is a simple technique used to compare the baseline or as-planned schedule to the as-built schedule or a schedule update reflecting progress. This method compares planned start and finish dates with the actual start and finish dates of activities on the as-planned critical and near-critical paths. This identifies delayed starts, extended durations and late finishes. This method is most effective on simple projects with short durations and one clear critical path that remains consistent throughout the entire project. Its accuracy diminishes as the actual critical path deviates from the planned schedule.
Time Impact Analysis (TIA)
The time impact analysis (TIA) is a comprehensive technique used to analyze each delay event individually in chronological order to calculate its impact. This methodology quantifies each delay based on the schedule immediately before and after the delay event took place. The difference between the project completion date before and after the event determines the extent of the delay. TIA does not require an as-built schedule and is typically easy and quick to perform. This technique is widely accepted when used during the project to timely resolve delayed performance. However, it is considered a hypothetical model as it does not rely on as-built data, and it can be overwhelming to perform if there are numerous delay events.
Windows Analysis
The windows analysis is a retrospective technique that divides the total project duration into smaller periods (commonly referred to as “windows”), and quantifies the as-built critical path delays for each of these periods. This form of analysis compares the baseline or as-planned schedule’s forecasted critical path to the as-built schedule, reflecting the as-built conditions for each selected period. This method typically relies upon the schedules in their contemporaneous state of submission (“as-is”). The windows analysis is easy to calculate and understand. It identifies delays as well as acceleration quantities and considers real-time conditions and actual construction progress. However, the windows analysis is time-consuming, requires complete project records and depends on a reliable baseline or as-planned schedule and as-built performance information.
Conclusion
The appropriate selection of a delay analysis method is important to accurately quantify delays. Analysts must be aware of the strengths and limitations of each method to determine which one is most suitable for the case at hand. Several factors must be considered when selecting a delay analysis methodology including, but not limited to, contractual requirements, source data availability, budget, and time allowed for the analysis and size of the dispute.
Categories: Blog
ShareWe use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Manage consent
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie | Duration | Description |
---|---|---|
cookielawinfo-checkbox-analytics | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics". |
cookielawinfo-checkbox-functional | 11 months | The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checkbox-necessary | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
cookielawinfo-checkbox-others | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other. |
cookielawinfo-checkbox-performance | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance". |
viewed_cookie_policy | 11 months | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.